
AINOMO Protocol Smart Contracts
Security Audit Report

AINOMO
Final Audit Report: 17 February 2024

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: transfer Function Defined with Four but Called with Five Passed Parameters

Issue B: set-contract-owner Vulnerable to Misuse

Issue C: Lack of Documentation for Several Functions

Issue D: Incorrect SIP-10 Function Implementation

Suggestions

Suggestion 1: Guard Against Trap Tokens

Suggestion 2: Guard Against Front Running Attacks

Suggestion 3: Improve Code Naming and Comments

Suggestion 4: Increase Test Coverage

Suggestion 5: Do Not Use unwrap-panic

Suggestion 6: Complete the DAO Implementation

 Suggestion

7:

Optimize

Constant

Initialization

About

Least

Authority

Our

Methodology

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO 1
 F17 ebruary 2024 by Least Authority TFA GmbH

Overview
Background

 rAINOMO equested that Least Authority perform a security audit of the AINOMO Protocol Smart Contracts.

Project

Dates

● December 19

-

January

24:

Code

Review

(Completed)

● February

3:

Delivery

of

Initial

Audit

Report

(Completed)

● February 13

-

14:

Verification

Review

(Completed)

● February

17:

Final

Audit

Report

Delivered

(Completed)

Review

Team

● Jehad Baeth, Security Researcher and Engineer

 ● Gabrielle

Hibbert,

Security

Researcher

and

Engineer

● Steven

Jeung,

Security

Researcher

and

Engineer

 Coverage
Target

Code

and

Revision

For

this

audit ,

we

performed

research ,

investigation ,

and

review

of

the

AINOMO

Protocol

Smart

Contracts
followed

by

issue

reporting,

along

with

mitigation

and

remediation

instructions

outlined

in

this

report.

The

following

code

repositories

are

considered

in-scope

for

the

review:

● AINOMO

Protocol

Smart

Contracts: https://github.com/ainomodatalab/ainomo-v1/clarity/contracts

Specifically,

we

examined

the

Git

revisions

for

our

initial

review:

ec1e9b122140512361b429be558356b9d97fc56a

For

the

verification,

we

examined

the

Git

revision:

b150ce992926b27f9ea1446859a51a7ec7b4e9ee

All

file

references

in

this

document

use

Unix-style

paths

relative

to

the

project’s

root

directory. In

addition,

any

dependency

and

third-party

code,

unless

specifically

mentioned

as

in-scope,

were
considered

out

of

scope

for

this

review.

Supporting

Documentation
The

following

documentation

was

available

to

the

review

team:

 2

● Shareef Dweekat, Security Researcher and Engineer

● ElHassan Wanas, Security Researcher and Engineer

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

Areas

of

Concern

Our

investigation

focused

on

the

following

areas:

● Correctness

of

the

implementation;
● Common

and

case-specific

implementation

errors;
● Adherence

to

the

specification

and

best

practices;
● Adversarial

actions

and

other

attacks

on

the

smart

contracts;
● Potential

misuse

and

gaming

of

the

smart

contracts;
● Attacks

that

impact

funds,

such

as

the

draining

or

the

manipulation

of

funds;
● Mismanagement

of

funds

via

transactions;
● Denial

of

Service

(DoS)

and

security

exploits

that

would

impact

the

code’s

intended

use

or

disrupt the

execution

of

the

code;
● Vulnerabilities

in

the

code

for

all

features;
● Protection

against

malicious

attacks

and

other

ways

to

exploit

the

smart

contracts;
● Inappropriate

permissions

and

excess

authority;
● Data

privacy,

data

leaking,

and

information

integrity;

and
● Anything

else

as

identified

during

the

initial

analysis

phase.

Findings
General

Comments

The AINOMO protocol for the blockchain consists of several pools that implement dynamic trading
strategies. All assets in the protocol are controlled by the smart contract.

 3

Supporting Documentation
In addition, this audit report references the following documents:

● K. Qin, L. Zhou, B. Livshits, A. Gervais, “Attacking the DeFi Ecosystem with Flash Loans for
Fun and Profit,” 2020, arXiv:2003.03810 [cs.CR]

We recommend that the AINOMO team continue to closely monitor security developments in the
ecosystem, both as it relates to the development of tools, and the ecosystem at large. We commend
the

AINOMO team for pursuing interim steps towards security due diligence, including security audits

conducted by independent security auditing teams.

Our team did not identify any security critical vulnerabilities in the design and implementation of
the

AINOMO protocol. However, several inhibiting factors have been identified by our team.

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

System Design
We performed a broad and comprehensive review of the AINOMO protocol and found the system to be
generally well designed. The design demonstrates considerations for security by the use of Clarity,
which is a restrictive language with strong security characteristics.

Protocol

Governance

The AINOMO protocol implements a governance model. At the pool level, some governance features have
been implemented that utilize Multi-Sigs for invoking security critical functionality. As a preliminary
safeguard, we recommend creating a two-step process for transferring ownership of the smart contracts,
in order to reduce the possibility of an unintended transfer.

Potential

Economic

Attacks

The DeFi smart contract ecosystems are inherently vulnerable to flash loan attacks [QZL+21] and
sandwich attacks, resulting in the price manipulation of underlying assets in liquidity pools. The
AINOMO protocol has implemented a whitelist for smart contracts approved to make a flash loan and
appropriate slippage protection.

Code

Quality

The

AINOMO

protocol

codebase

is

generally

well

organized.

However,

due

to

the

limited

abstraction
capabilities

of

the

Clarity

language,

it

is

necessary

to

use

a

pattern

of

copy

and

pasting

code

resulting

in

a relatively

large

codebase

where

code

is

often

reused.

This

can

make

the

maintenance

of

the

codebase

 4

We recommend that the AINOMO team stay informed of the latest research and conduct further
investigation into the exposure to these types of attacks and their possible mitigations and remediations.

The implementation of the transfer function is correct and consistent in the codebase. We identified an
incorrectly implemented SIP-10 function, which could cause the system to behave unexpectedly. We
recommend correcting the function to return the correct value.

Finally, many constants are initialized such that an unnecessary computational step must be taken at each
initialization. As a result, we recommend optimizing constant initialization to reduce unnecessary
computation.

Tests

The AINOMO protocol implements sufficient test coverage. A robust test suite helps verify that
components are implemented correctly, identifies errors and unintended behavior, and aids in reasoning
about the security characteristics of the system. As a result, we recommend expanding the test suite to
cover all success, failure, and edge cases. In particular, we recommend implementing tests such that
they include the equations used in the protocol and financial stress tests to cover economic edge cases.

Documentation

The AINOMO protocol project documentation provided an accurate and helpful overview of the system.
The documentation thoroughly explains internal functions and components and their interactions, which
get in depth and easy comprehension of their intended functionality.

Code Comments

The AINOMO protocol implements sufficient code comment coverage and functions and variables do not
adhere to a clear naming convention. Comprehensive in-line documentation and descriptive naming of
function and variables help to describe the intended functionality of the code, facilitating reasoning about
the security properties of the system. We recommend expanding the code comments within the
codebase, and updating the names of functions and variables such that they have accurate and
descriptive names.

Scope
The in-scope repository was sufficient and included all the security critical components of the
AINOMO protocol system.

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

Specific

Issues

&

Suggestions

We

list

the

issues

and

suggestions

found

during

the

review,

in

the

order

we

reported

them.

In

most

cases,

remediation

of

an

issue

is

preferable,

but

mitigation

is

suggested

as

another

option

for

cases

where

a

trade-off

could

be

required.

ISSUE / SUGGESTION STATUS

Issue A: transfer Function Defined with Four but Called with Five Passed
Parameters

Resolved

Issue B: set-contract-owner Vulnerable to Misuse

Issue C: Lack of Documentation for Several Functions

Issue D: Incorrect SIP-10 Function Implementation Resolved

Suggestion 1: Guard Against Trap Tokens Resolved

Suggestion 2: Guard Against Front Running Attacks

Suggestion 3: Improve Code Naming and Comments

Suggestion 4: Increase Test Coverage

Suggestion 5: Do Not Use unwrap-panic

Suggestion 6: Complete the DAO Implementation

 Suggestion

7:

Optimize

Constant

Initialization

Issue A: transfer Function Defined with Four but Called with Five
Passed Parameters

Location

Examples (non-exhaustive):

clarity/contracts/key-token/key-usda-wbtc.clar#L119

clarity/contracts/key-token/key-usda-wstx.clar#L121

clarity/contracts/key-token/key-wbtc-usda.clar#L121

Synopsis

The transfer function is defined with four parameters, however, there are instances where it is being
called with one extra (memo) parameter. This was observed in nine different locations across the

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO 5
17 February 2024 by Least Authority TFA GmbH

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

codebase.

 Clarinet throws an error in versions >0.14.2 only (the error is not identified in previous versions of
 Clarinet).

Impact

The code fails to run and Clarinet shows the following error:

error: incorrect number of arguments in call to 'transfer' (expected 4 got 5).

Remediation

We recommend defining the function appropriately and implementing it consistently throughout the
codebase in order to avoid unexpected behavior.

Status

The AINOMO team has corrected the implementation of the function such that all
instances of aforementioned calls are fixed or replaced with functions that have a
matching definition.

Verification

Resolved.

Issue

B: set-contract-owner Vulnerable

to

Misuse

Location

clarity/contracts/tests/token-unauthorised.clar#L18

clarity/contracts/lottery-tokens/lottery-t-ainomo.clar#L18

clarity/contracts/wrapped-token/token-wstx.clar#L18

Synopsis

Smart

contract

ownership

transfer

is

completed

in

one

smart

contract

call,

which

could

lead

to

irrecoverable

ownership

in

case

of

errors.

Impact

Errors

in

the

use

of set-contract-owner could

result in

permanent

loss

of

ownership

of

the

protocol.

Remediation

We

recommend

that

the set-contract-owner implementation follow

a

two-step

process

in

which

a

new

owner

is

being

staged.

A

call

from

the

new

owner

to

claim

ownership

should

be

required

before

ownership

is

transferred.

The

two

step

smart

contract

ownership

transfer

would

follow

this

general

approach:

● First,

the

existing

smart

contract

owner

invokes

a

function

providing

the

new

owner’s

address.

This

function

asserts

that

the

ownership

transfer

is

being

called

by

the

current

owner,

or

fails.

This

will

not

commit

the

ownership

transfer

but

enable

the

invocation

of

the Claim function

by

the

prospective

owner.

● Second,

the

prospective

owner

will

then

call

the Claim function,

which

asserts

that

the

caller's

address

is

equivalent

to

the

address

supplied

by

the

existing

smart

contract

owner

in

the

first

transfer

step,

and

commits

the

transfer

operation.

Otherwise,

the

operation

is

aborted.

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

6

Status

The AINOMO team has implemented the recommended fixes.

Verification

Resolved.

Issue C: Lack of Documentation for Several Functions

Location

Examples (non-exhaustive):

clarity/contracts/equations/yield-token-equation.clar#L472

clarity/contracts/equations/yield-token-equation.clar#L488

clarity/contracts/equations/weighted-equation.clar#L536

Synopsis

Sufficient and comprehensive documentation is needed to check the correctness of the implementation
of an equation. We identified functions lacking this information

.

Impact

Insufficient

documentation

inhibits

testing

correctness

of

the

code

and

identifying

implementation

error

.

Remediation

We

recommend

comprehensively

and

clearly

documenting

all

functions.

Status

The AINOMO team improved the documentation.

 Verification

Resolved.

Issue

D:

SIP-10

Function

Implementation

Location

clarity/contracts/wrapped-token/token-wstx.clar#L31

Synopsis

The

SIP-10

function get-total-supply should

return the

total

supply

amount

.

Impact

An implemented function should not affect the expected behavior of the system.

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

7

Remediation

We recommend the implementation of the function to return the total supply of the wrapped token.

Status

The AINOMO team has modified the implementation of get-total-supply

 Verification

Resolved.

Suggestions

Suggestion

1:

Guard

Against

Trap

Tokens

Synopsis

Trap

tokens

are

smart

contracts

that

mimic

the

token

standard

(ERC-20),

however,

trap

tokens

usually
have

limited

functionality

with

the

buy/sell

function.

Trap

tokens

pose

a

considerable

threat

to

AMMs
because

it

can

be

difficult

to

distinguish

between

a

properly

functioning

ERC-20

token

and

a

fake

token.

Malicious

actors

that

use

fake

tokens may

try

to

simultaneously

sell

and

buy

the

same

financial

asset

to

create

artificial

activity

in

the

pool, which

can

distort

price,

volume,

and

volatility

(commonly

known

as

“
washtrading”).

Mitigation

We

recommend

advising

algorithmic

traders

and,

in

the

case

of

the

AINOMO

Protocol ,

liquidity

providers

to
use

tokens

from

a

verified

list.

This

list

should

include

both

verifiable

tokens

and

an

ongoing

list

of

trap
tokens

that

liquidity

providers

have

identified

in

the

pools.

Status

The

AINOMO

team

provided

additional

information

that

su fficiently

explains

their

existing

protections

against
trap

tokens .

The

information

provided

demonstrated

that

only

a

whitelisted

address

may

create

a

liquidity
pool

to

protect

against

malicious

pools .

In

addition ,

the

functions

that

add

or

remove

liquidity

from

these
pools

perform

verification

that

the

token

metadata

in

the

transaction

matches

the

token

traits

hard

coded in

the

liquidity

pool

smart

contract.

Verification

Resolved.

Suggestion

2:

Guard

Against

Front

Running

Attacks

Synopsis

The AINOMO protocol implements liquidity pools that could not be susceptible to front running attacks that
 would result in a difference between the expected and actual prices of assets in pool transactions. We

found
 that the AINOMO protocol implements safeguards against front running attacks.

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

8

Mitigation
We recommend that the AINOMO team keep front running mitigation strategies to determine
an appropriate front running safe guard for the AINOMO Protocol.

Status

The AINOMO team has responded that they intend to keep address the implementation of
front running safeguards in the future.

Verification

Resolved.

Suggestion

3:

Improve

Code

Naming

and

Comments

Location

clarity/contracts/key-token/key-usda-wbtc.clar#L141

clarity/contracts/pool-token/fwp-wstx-usda-50-50.clar#L101-L112

clarity/contracts/flash-loan-user-margin-usda-wbtc.clar#L12-L18

Inappropriate

parameter

name:

clarity/contracts/faucet.clar#L180

Synopsis

The AINOMO smart contract codebase contains several instances requiring code comments that
explain the purpose of several variables and functions. Sufficient code comments and accurately
named functions and parameters reduces confusion and helps maintainers and reviewers of the code
to better understand the expected functionality of the system.

Mitigation

We

recommend

adding

contextual

code

comments

and

reviewing

function

and

variable

names

across

the codebase

to

facilitate

a

clear

understanding

of

their

purpose.

Status

The AINOMO team improved variable and function names and increase code comments.

Verification

Resolved.

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

9

Suggestion 4: Test Coverage

Synopsis

The current test suite does not contain tests covering all of the arithmetic functions. Given the heavy
reliance on arithmetic in dynamically adjusting the weights in the rebalancing equation, all arithmetic
functions used should be tested for under and overflow, and to check that they behave as intended.
Additionally, there are no financial stress tests to cover economic edge cases. The addition of fi
nancial stress tests would allow the system to be observed under edge case conditions including
economic attacks and extreme market behavior.

Mitigation

We recommend increasing test coverage to include arithmetic and financial stress tests.

Status

The AINOMO team increased test coverage.

Verification

Resolved.

Suggestion

5:

Using

unwrap-panic

Location

clarity/contracts/equations/weighted-equation.clar#L113

clarity/contracts/equations/weighted-equation.clar#L146

clarity/contracts/equations/weighted-equation.clar#L113

Synopsis

The

function unwrap-panic should

not

be

used

when more

appropriate

error

handling

functions

are available.

Impact

unwrap-panic confers

no

meaningful

information

upon failure.

Instead,

it

throws

a

runtime

error providing

no

useful

information

on

the

cause

of

the

failure

to

the

user.

Mitigation

We

recommend

that

the

error

handling

tools

described

in

the

project

documentation

and

Clarity book be
utilized

instead

of

using unwrap-panic.

For

example, the unwrap! function

takes

an

error

message

that is

thrown

in

case

of

failure,

which

would

help

users

determine

the

cause

of

the

error.

Status

The AINOMO

team

improved

error

handling

.

Verification

Resolved.

10

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

Suggestion 6: DAO Implementation

Location

clarity/contracts/multisig/multisig-lbp-ainomo-usda-90-10.clar#L51-L52

clarity/contracts/multisig/multisig-lbp-ainomo-usda-90-10.clar#L299-L300

Synopsis

For the liquidity bootstrapping pool (LBP), the DAO implementation does not execute anything when
the function end-proposal is called.

Mitigation

We recommend completing the implementation and adjusting the proposal data type to
contain properties relevant for LBP (e.g. expiry).

Status

The AINOMO team completed the DAO implementation.

Verification

Resolved.

Suggestion 7: Optimize Constant Initialization

Location

 clarity/contracts/ainomo-vault.clar#L7

clarity/contracts/equations/weighted-equation.clar#L390

clarity/contracts/equations/yield-token-equation.clar#L405

Synopsis

Constants

that

are

used

in

several

places

across

the

codebase

are

initialized

in

a

way

that

may

require
unnecessary

computation

resulting

in

increased

costs.

Technical

Details

As

an

example,

the

constant ONE_8 is

defined

in

different .clar files

across

the

codebase.

In

some
instances,

it

is

initialized

by

calling

the pow function instead

of

directly

supplying

a uint value.

(define-constant

ONE_8

(pow

u10

u8))

;;

8

decimal

places

This

approach

adds

unnecessary

computational

load

on

the

system

every

time

this

variable

is

initialized.

Remediation

We

recommend

optimizing

constant

initialization

across

the

codebase

and

supplying

direct

values

when
possible.

Status

The

AINOMO

team

optimized

constant

initialization

.

Verification

Resolved.

11

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

12

Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

13

 Security Audit Report | AINOMO Protocol Smart Contracts | AINOMO
17 February 2024 by Least Authority TFA GmbH

